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Simulation has emerged as one of the most important means of assurance for Machine 
Learning (ML) embedded in control systems. This guidance presents a summary of issues 
relating to the use of simulation in assuring ML, as well as experience gained from the 
TIGARS demonstrator project in the autonomous vehicle domain.  

It should be noted that simulation discussions in this guidance are limited to simulation 
environments for verification and reinforcement learning of ML, rather than, for example, 
simulations of overall traffic flow once autonomy has been incorporated. 

Simulation is an approach widely used and encouraged (e.g. by the NHSTA [1]) to train and 
verify the performance of ML used in autonomous vehicles. Simulation can be performed at 
many different levels of abstraction, some of which are described below: 

• Fully virtual simulation – where the ML is executed in isolation with fully electronic 
input data and data capture (e.g. running an image classification Convolutional 
Neural Network (CNN) on a PC with sample image file) 

• Hardware in the Loop (HIL) – where the ML is run on representative hardware, 
however the inputs and outputs are managed virtually or in an artificial environment 
(e.g. putting an autonomous vehicle inside a room with a bank of monitors and 
capturing decisions via data logging). Simpler cut down versions may also be used 
(e.g. a sub-system in isolation but with hardware sensors) 

• Real-world limited trial – where the autonomous system is run on representative 
hardware but in a controlled environment such as on a test track 

• Real-world trial – where the autonomous system is put into the public environment, 
with no control of test conditions 

Simulation may require substantial computer resources to create an environment with 
enough fidelity to gather meaningful results. 

Table 1 below summarises the pros and cons of different combinations of virtual and real-
world simulation. In practical terms it may be desirable to use different types at different 
stages of ML development. This would be dependent on the risk associated with the system, 
as that would inform the amount of evidence required to demonstrate adequate safety. 
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Table 1 – Simulation variants and their strengths and weaknesses 
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Different combinations of virtual and real-world simulations can be used and, in practical 
terms, it may be desirable to use different types at different stages of ML development. This 
would be dependent on the risk associated with the system, as that would inform the 
amount of evidence required to demonstrate adequate safety. 

Summary of approach 

• Simulation can have many roles in the development and assurance lifecycle: the 
roles of the different simulation variants should be specified and justified 

• Confidence in the simulation environment needs to be established. In other words, 
how much we can trust it, and how much do we need to trust it. This will include: 

o confidence in any simulation software (in the quality of its construction) 
o confidence in the fidelity of the sensor data compared to real-life 
o trust in the results produced (both positive and negative) 

• Although many tools are available off the shelf to support simulation, in our 
experience, they did not perform as anticipated (ViViD had many timing issues) and 
they may not have been developed to the quality traditionally expected for safety 
critical systems testing 

• Adjustments in system behaviour may be needed to accommodate the simulation 
environment and these will need to be justified so that test evidence can be used in 
the overall assurance cases 

Further details on this guidance can be found in [5]. 

Example of application of guidance 

This section provides an overview of the simulation performed on the TIGARS Evaluation 
Vehicle (TEV) golf cart, with an acceleration control system containing ML. The study was 
undertaken to elucidate the gaps between actual and simulation environments for testing 
systems including ML models. It is used to highlight pragmatic issues in using simulation on 
real projects using off the shelf components integrated with bespoke software, by a sub-
system developer. 

The ML used was a version of the You Only Look Once (YOLO) [4] CNN which has been 
trained to detect people and vehicles, as well as other objects. The system under test uses a 
combination of distance calculations via parallax images, LiDAR and image classification to 
determine speed and acceleration settings. The system responds to other vehicles and 
pedestrians in its environment depending on their type(s) and distance from the vehicle. 

Tests were conducted in the following two simulation environments: 

• TEV test room – combination of virtual and artificial environment with HIL 

• Virtualized Verification into automatic Driving (ViViD) – fully virtual environment  

TEV test room environment 

These tests were conducted using a chassis dynamo. In the chassis dynamo environment, 
the TEV runs over the dynamo rollers. During the test, an environmental situation is 
reproduced by installing a panel of a person or a car in front of the golf cart. Since the space 
in which the chassis dynamo can be used is narrower than real life, the threshold values of 
the distance from the front vehicle when accelerating, decelerating, or stopping were 



Body of Knowledge 2.7 – cross-domain and automotive practical guidance 
Copyright © 2020 University of York 

 

adjusted proportionally. The configuration of the TEV test room is shown in Figure 1. The 
chassis dynamo environment is seen in Figure 2. 

 

Figure 1: TEV test room configuration diagram 

 

Figure 2: Chassis dynamo environment 

ViViD environment 

ViViD provides a fully virtual simulation environment for the TEV golf cart. Using ViViD, 
sensor information can be acquired by User Datagram Protocol (UDP) communication. It can 
be configured so that obstacles such as vehicles and pedestrians can be inserted into the 
environment, as well as failure injection within sensor data. The configuration of the ViViD 
environment is shown in Figure 3. The tests were carried out with the TEV driving on a 
typical road as shown in Figure 4. 
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Figure 3: ViViD configuration diagram 

 

Figure 4: ViViD environment 

Experimental findings 

The results of the experiments described above are discussed below. 

The system on the TEV uses comparisons of distance information from the object detection 
and LiDAR. There were many issues with timing in the ViViD environment which impacted 
on the effectiveness of the testing. 

The LiDAR simulation software was too slow to be used at full fidelity in ViViD. As a result 
only part of the LiDAR data (the front ±15 degrees) was used to ensure a similar execution 
time as the real system. This was justified as it had no impact on the test cases being run 
within the ViViD environment. 

A very high specification machine was required to run the test application and simulator 
together, otherwise there were unacceptable delays sending the video output to the test 
application and in running the YOLO component. Even then, there were issues providing a 
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predictable frame rate from the simulator, since only approximately 57 seconds of real-time 
data could be processed in around 1 minute. This had a cumulative effect on the simulation. 

There were further complications with variations in the execution cycle, which changed 
from test to test. This meant that the tests were not repeatable. Only a rigid real-time 
execution of the simulator would have solved this, something that was impractical with off 
the shelf software. An attempt was made to lock-step time stamps from the LiDAR and 
object detection with the slowest input data, but the overall time lag meant this was not a 
complete solution. One important knock-on effect of the lack of repeatability is on 
regression testing. Tests cases re-run on a changed system cannot be assumed to execute 
with the changed functionality as the only variant, so the results of regression testing would 
need to be closely examined to ensure the results observed are valid and representative. 

It was found that small scale laboratory experiments were not easy and unexpected 
problems were encountered. For example, after scaling the parameters of the tests due to 
the small amount of laboratory space available, the TEV then experienced large variations in 
the acquired distance from the golf cart vision sensors. The sensors had had relatively high 
accuracy when detecting objects at a distance originally assumed in the TEV specification. 
However, as it is complex and expensive to prepare a testing environment that is very 
similar to the actual deployment environment (e.g. test tracks or large scale experiments) a 
‘good’ simulator may be better suited in some cases and was still felt to provide value. 
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